Normal Versus Noncentral Chi-square Asymptotics of Misspecified Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal Versus Noncentral Chi-square Asymptotics of Misspecified Models.

The noncentral chi-square approximation of the distribution of the likelihood ratio (LR) test statistic is a critical part of the methodology in structural equation modeling. Recently, it was argued by some authors that in certain situations normal distributions may give a better approximation of the distribution of the LR test statistic. The main goal of this article is to evaluate the validit...

متن کامل

Munich Personal RePEc Archive Normal versus Noncentral Chi - square Asymptotics of Misspecified Models

The noncentral chi-square approximation of the distribution of the likelihood ratio (LR) test statistic is a critical part of the methodology in structural equations modeling (SEM). Recently, it was argued by some authors that in certain situations normal distributions may give a better approximation of the distribution of the LR test statistic. The main goal of this paper is to evaluate the va...

متن کامل

Inequalities for Noncentral Chi-square Distributions

Noncentral chi-square distributions play an important role in statistics. They occur for instance as exact or limiting distributions of test statistics under alternatives. To examine the power functions of such tests we come across the problem of comparing distribution functions of noncentral chi-square variables. In this section inequalities are presented, which make such a comparison possible...

متن کامل

The bivariate noncentral chi-square distribution - A compound distribution approach

This paper proposes the bivariate noncentral chi-square (BNC) distribution by compounding the Poisson probabilities with the bivariate central chi-square distribution. The probability density and cumulative distribution functions of the joint distribution of the two noncentral chi-square variables are derived for arbitrary values of the correlation coefficient, degrees of freedom(s), and noncen...

متن کامل

Holonomic gradient method for distribution function of a weighted sum of noncentral chi-square random variables

We apply the holonomic gradient method to compute the distribution function of a weighted sum of independent noncentral chi-square random variables. It is the distribution function of the squared length of a multivariate normal random vector. We treat this distribution as an integral of the normalizing constant of the Fisher-Bingham distribution on the unit sphere and make use of the partial di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multivariate Behavioral Research

سال: 2009

ISSN: 0027-3171,1532-7906

DOI: 10.1080/00273170903352186